
第五章 静态时序分析(5)

芯动力——硬件加速设计方法

邸志雄@西南交通大学

zxdi@home.swjtu.edu.cn

Often there are multiple clocks defined in a design with frequencies

that are simple (or integer) multiples of each other.

In such cases, STA is performed by computing a common base period

among all related clocks (two clocks are related if they have a data

path between their domains). The common base period is established

so that all clocks are synchronized.

1- Integer Multiples

Multiple Clocks

create_clock -name CLKP -period 5 -waveform {0 2.5} [get_ports CLKP]

create_clock -name CLKQ -period 10 -waveform {0 5}

Here is an example that shows four related clocks:

create_clock -name CLKM -period 20 -waveform {0 10} [get_ports CLKM]

Here is a setup timing report for a path that goes from the faster clock to the slower
clock.

Here is a setup timing report for a path that goes from the faster clock to the slower
clock.

Here is a setup timing report for a path that goes from the faster clock to the slower
clock.

Here is the corresponding hold path report.

Here is the corresponding hold path report.

Here is the corresponding hold path report.

2- Non-Integer Multiples

Consider the case when there is a data path between two clock domains whose

frequencies are not multiples of each other.
For example, the launch clock is divide-by-8 of a common clock and the capture clock is

divide-by-5 of the common clock as shown in Figure. This section describes how the

setup and hold checks are performed in such a situation.

2- Non-Integer Multiples

create_clock -name CLKM -period 8 -waveform {0 4} [get_ports CLKM]

create_clock -name CLKQ -period 10 -waveform {0 5}

create_clock -name CLKP -period 5 -waveform {0 2.5} [get_ports CLKP]

The setup check occurs over the minimum time between the launch edge

and the capture edge of the clock.

The timing analysis process computes a common period for the related

clocks, and the clocks are then expanded to this base period.
Note that the common period is found only for related clocks (that is, clocks

that have timing paths between them).

最小公倍数的周期

2- Non-Integer Multiples

2- Non-Integer Multiples

2- Non-Integer Multiples

2- Non-Integer Multiples

2- Non-Integer Multiples

2- Non-Integer Multiples

Now we examine the setup path from the CLKP clock domain to the CLKM

clock domain. In this case, the most restrictive setup path is from a launch

edge at 15ns of clock CLKP to the capture edge at 16ns of clock CLKM.

2- Non-Integer Multiples

2- Non-Integer Multiples

3- Phase Shifted

Here is an example where two clocks are ninety degrees phase-shifted with

respect to each other.

create_clock -period 2.0 -waveform {0 1.0} [get_ports CKM]

create_clock -period 2.0 -waveform {0.5 1.5} [get_ports CKM90]

偏移0.5ns

3- Phase Shifted

3- Phase Shifted

3- Phase Shifted

3- Phase Shifted

Half-Cycle Paths

If a design has both negative-edge triggered flip-flops (active clock

edge isfalling edge) and positive-edge triggered flip-flops (active clock

edge is rising edge), it is likely that half-cycle paths exist in the design.

A half-cycle path could be from a rising edge flip-flop to a falling edge

flip-flop, or vice versa. Figure 8-19 shows an example when the launch

is on the falling edge of the clock of flip-flop UFF5, and the capture is

on the rising edge of the clock of flip-flop UFF3.

Half-Cycle Paths

Figure 8-19 shows an example when the launch is on the falling edge of the clock of flip-flop

UFF5, and the capture is on the rising edge of the clock of flip-flop UFF3.

下降沿 上升沿

Here is the setup timing check path report.

Note the edge specification in the Startpoint and Endpoint. The falling edge occurs at 6ns and
the rising edge occurs at 12ns. Thus, the data gets only a half-cycle, which is 6ns, to propagate
to the capture flip-flop.

Half-Cycle Paths

The hold check always occurs one cycle prior to the capture edge. Since the capture edge
occurs at 12ns, the previous capture edge is at 0ns, and hence the hold gets checked at 0ns.
This effectively adds a half-cycle margin for hold checking and thus results in a large positive
slack on hold.

False Paths

It is possible that certain timing paths are not real (or

not possible) in the actual functional operation of the

design. Such paths can be turned off during STA by

setting these as false paths. A false path is ignored by

the STA for analysis.

False Paths

from one clock domain to
another clock domain；

from a clock pin of a flip-
flop to the input of
another flip-flop；

through a pin of a cell；

or a combination of
these.

False Paths

When a false path is specified through a pin of a cell, all paths that

go through that pin are ignored for timing analysis. The advantage

of identifying the false paths is that the analysis space is reduced,

thereby allowing the analysis to focus only on the real paths. This

helps cut down the analysis time as well. However, too many false

paths which are wildcarded using the through specification can

slow down the analysis.

Half-Cycle Paths

A false path is set using the set_false_path specification. Here

are some examples.

set_false_path -from [get_clocks CLK] \-to [get_clocks CORE_CLK]

set_false_path -through [get_pins UMUXO/S]

Any path starting from the SCAN_CLK domain to the CORE_CLK domain is a

false path.

Any path going through this pin is false.

Half-Cycle Paths

A false path is set using the set_false_path specification. Here

are some examples.
set_false_path \-through [get_pins SAD_CORE/RSTN]

set_false_path -to [get_ports TEST_REG*]

The false path specifications can also be specified to, through, or from a

module pin instance.

All paths that end in port named TEST_REG* are false paths.

set_false_path -through UINV/Z-through UAND0/Z

Any path that goes through both of these pins in this order is false.

Half-Cycle Paths

Few recommendations on setting false paths are given

below. To set a false path between two clock domains, use:

set_false_path -from [get_clocks clockA] \-to [get_clocks clockB]

set_false_path -from [get_pins {regA_*} /CP] \-to [get_pins {regB_*} /D]

instead of:

The second form is much slower

False Paths

Another recommendation is to minimize the usage of -

through options, as it adds unnecessary runtime

complexity. The -through option should only be used

where it is absolutely necessary and there is no alternate

way to specify the false path.

False Paths

From an optimization perspective, another guideline is to not use a false

path when a multicycle path is the real intent. If a signal is sampled at a

known or predictable time, no matter how far out, a multicycle path

specification should be used so that the path has some constraint and

gets optimized to meet the multicycle constraint. If a false path is used

on a path that is sampled many clock cycles later, optimization of the

remaining logic may invariably slow this path even beyond what may be

necessary.

